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PHIYSIOLOGICALLY-BASED PHARMACOKINETIC/TOXICOKINETIC MODELING IN

RISK ASSESSMENT

INTRODUCTION

Human health risk assessments are usually based on data collected under less than ideal experimental or

clinical conditions. For example, animal studies with exposure to the chemical of interest at relatively

high doses over a limited period of time may need to be used to estimate the likely health effects of

chronic human exposure to much lower doses, perhaps via a different route of exposure. Although the

qualitative relevance of such datasets to the conditions under investigation is usually clear, for example in

identifying likely target organs for toxicity, making quantitative use of the data for dose-response analysis

and human health risk assessment is often problematic. Historically, this issue has been approached by

making use of a series of uncertainty factors when extrapolating between animals and humans, high to

low doses, from one exposure route to another, etc. (Figure 1). Such factors are used to scale the animal

exposure to a value that is considered acceptable to humans under the conditions of interest. Although the

use of such factors has become a fine art in the regulatory community, their specific values remain quite

arbitrary.

Animal in vivo Data Hwum Risk

A

ZB C 
D

C

Animal in vitro Data Human in vifto Data

Figure 1. The parallelogram approach. (A) This extrapolation is normally made in human health risk
assessments; an uncertainty factor is used. (B) The comparison between in vivo and in vitro animal data is

frequently made. (C) This comparison can be made when in vitro systems derived from humans are
utilized. (D) Extrapolation from in vitro human data, along with extrapolation from in vivo animal data,

will improve human health risk evaluation.



An alternative approach involves the refinement of the dose-response analysis by focusing on target site

dosimetry, by mathematically describing the four major processes of pharmacokinetics: bioavailability,

distribution, metabolism and elimination. In other words, uncertainty factors for animal to human

extrapolation and even human inter-individual extrapolation are replaced with efforts to directly compare

the dose of chemical in the target tissue under both the experimental conditions and the human exposure

conditions of interest. This comparison is then used to assess the likelihood of health effects in humans

from the observed responses of the experimental animals. In contrast to the use of uncertainty or "safety"

factors, this approach tries to provide a direct estimate of risk, rather than a conservative upper bound.

Physiologically-based pharmacokinetic (PBPK) modeling has become the tool of choice to develop

estimates of target site dosimetries in animals and humans. PBPK models have advantages over more

traditional kinetic models in that PBPK compartments correspond directly to the tissues and organs in the

species. It is thus possible to meaningfully extrapolate from one animal to another by simply taking into

account physiological differences (different organ volumes, blood flows, etc.). The drawbacks of PBPK

modeling primarily relate to the time, effort and cost involved in appropriately developing, validating and

applying a model for the situation at hand. In this report, we outline some of the practical issues involved

in the appropriate development of a PBPK model, so that such costs may be kept to a minimum. The

overall process of model formulation, refinement and validation is iterative, as shown in Figure 2.
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Figure 2. Schematic representation of the model development process in a risk assessment context.
Adapted from Clewell and Andersen (1989).

In many cases, PBPK models become complicated and, therefore, pose a risk communication problem.

Hopefully the approaches and guidelines presented below will help in the focused development of models

that are as simple as possible to explain and extrapolate the data, but not too simple, in that they fail to

take into account the appropriate biological processes that underlie a meaningful risk assessment. In terms

of their historical development, PBPK models have progressed from the simple to the more complex.

Among the first useful models to be developed were those for volatile organics, the so-called Ramsey-

Andersen models. Many volatile organic compounds could be modeled to a sufficient degree of

physiological detail by making a number of simplifying assumptions (such as using homogenous tissue

compartments) (Ramsey and Andersen, 1984). This resulted in a typical "bare bones" PBPK model.
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Models of this kind have been successfully developed for styrene, methylene chloride and other

compounds (Andersen et al., 1987; Ramsey and Andersen, 1984). These models have been widely used in

risk assessment and they, together with the physiological and chemical-specific parameters needed to

develop them, are discussed in the next sections.

Certain experimental techniques are central to the successful development of such models. These include

methods to experimentally determine blood and tissue partition coefficients (vial equilibration and in vivo

methods); gas uptake and in vitro methods to determine metabolic parameters; and appropriate design of

exposure studies to optimize model development and validation, including inhalation (whole-body or

nose-only), oral exposure and injection (bolus, infusion) studies.

For some chemicals, however, such bare bones models are not enough to adequately describe the data. In

such cases, the underlying assumptions need to be changed and additional biological complexity often is

introduced into the model. At this point, a great deal of scientific judgment comes into play in deciding

the degree of model complexity that is appropriate. We discuss some of the issues involved in the

development of more complex PBPK models in later sections below. Issues may include more detailed

modeling of metabolic processes and specific organs, such as the liver and fat; changes in physiology due

to development, pregnancy or aging (life-stage modeling); and interactions between more than one

chemical. In many cases, it may also be necessary to interface the pharmacokinetic models with models of

the interaction of the chemical with the target tissue (pharmacodynamic (PD) models) in order to provide

a more complete description of the overall process. We illustrate some of these processes by considering a

recently developed PBPK/PD model for perchlorate and iodide in both rats and humans.

Figure 3 shows a schematic for a typical PBPK model for a volatile organic chemical (in this case

styrene). As described earlier, PBPK models, as opposed to classical compartmental kinetic models, are

physiologically relevant. They include parameters values that quantitatively describe actual biological
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systems. These parameter values include physiological and anatomical values such as organ weights and

blood flows, and chemical and tissue-specific values such as partition coefficients, measurements of

metabolic pathways and transport parameters.

inhalation Qalv J Alveolar QalV
Cinh -- Space __Qt C&l

Cvn Lung Blood Cwt"
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-- FatMucl Tissue Ce--t
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CV1 art
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Figure 3. Schematic representation of a simple Ramsey-Andersen PBPK model. Adapted from
Ramsey and Andersen (1984).

The mass balance of the chemical in each (non-metabolizing) tissue x, for use in the model, is in general

given by

(d, Ca. (PC)j (Equation 1)
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where V,, is the tissue volume, Q, is the tissue blood flow, Cart is the arterial concentration, C,, is the tissue

concentration, and (PC),, is the blood-tissue partition coefficient specific to the chemical, species and

tissue.

PHYSIOLOGICAL PARAMETERS

Whenever pharmacokinetic studies are performed for developing a PBPK model, the actual body and

organ weights of the animals studied should be used to represent model compartments. Some

compartments, which involve active cellular transport mechanisms of the chemical of concern, may

require subcompartments; for example, the thyroid compartment in a model may include follicle, lumen

and stroma sub-compartments. If possible, actual values of these cellular subcompartments should be

used. If such kinetic studies were not performed, organ weights and subcellular compartments can be

described as fractions of body weight. This allows automatic adjustment of the compartments with

varying body weight. If physiological data are unavailable, several comprehensive lists of physiological

parameters for multiple species exist (Arms and Travis, 1988; Brown et al., 1997; Davies and Morris,

1993). Additionally, physiological parameters are generally listed in published PBPK models.

Mean or central tendency values are often used to represent the tissue volumes and blood flows used in

PBPK models. However, considerable variability in these parameters may exist for some tissues. For

example, blood flow to the stomach can increase tenfold in response to enhanced functional activity

(secretion and digestion) (Granger et al., 1985). In such a case, an estimate of resting blood flow may be

used (Brown et al., 1997; Davies and Morris, 1993).

Parameters for perinatal and lifetime models need to be considered relative to age-related growth, which

varies across tissues. Allometric scaling cannot sufficiently describe the changes in tissue growth, blood

flows or fetal/neonatal growth taking place during the perinatal period. As opposed to the typical growth
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scenario, organs and tissues cannot be assumed to increase at the same rate in this dynamic system.

During gestation, the placenta, uterus, mammary tissue and fetal volume are growing at an accelerated

rate in comparison to the other organs. Likewise, during lactation, the mammary gland and maternal and

neonatal fat content show the most dramatic changes. Body weight of the neonate also changes

dramatically. Maternal weight gain is due mainly to the growth of these select tissues rather than growth

of other organs. Therefore, the total change in the maternal body weight can be simply described as the

change in these specific tissue volumes added to the initial pre-pregnancy body weight. Likewise, the

temporal changes in maternal cardiac output during gestation and lactation can be described as the sum of

the initial cardiac output and the change in blood flow to the mammary gland, fat, placenta and uterine

tissues.

Growth equations for many perinatal physiological parameters are provided in Gentry et al. (2002) and

O'Flaherty et al. (1992). To date, organ weights and blood flow are not available for early time points in

gestation. Clewell et al. (2003a) extrapolated to these early period of growth by using a best-fit

exponential curve to organ-specific data measured later in gestation.

Significant sex differences in some tissues can also be a source of variability. The distribution of a

chemical is affected by multiple factors, including body mass index (BMI), body composition, plasma

volume, organ blood flow and the extent of tissue and plasma protein binding of the drug. Women have a

higher body fat percentage than men (32.7 to 21.0 percent, respectively) (Brown et al., 1997). Such a

large difference would result in disparities in the rate and extent of the chemical's distribution. Women

also have a lower average body weight, a smaller average plasma volume and lower average organ blood

flows. Gender-specific values are recommended when incorporating a fat compartment, especially for

humans. Other major sex differences exist in several protein groups responsible for binding drugs in

human plasma. These differences are influenced by concentrations of sex hormones. Sex-based

differences in drug metabolism seem to play a greater role in intergender pharmacokinetic variability than
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any of the other pharmacokinetic parameters (Gandhi et al., 2003). When sex difference data pertaining to

a specific species are not available, values measured from other species, such as mice or rats, can be

allometrically scaled as described later.

CHEMICAL-SPECIFIC PARAMETERS

Development of a PBPK model requires certain essential chemical-specific components. These are: 1)

experimentally measured or theoretically calculated partition coefficients, 2) an estimate of in vivo

metabolism, and 3) actual measurements of excretion rates of parent and metabolite. The last is crucial if

the metabolite is the toxic moiety and the dosemetric quantity needed for the dose response assessment is

not adequately represented by metabolism of the parent.

Partition Coefficients

The partition coefficient (PC) is an essential physiological parameter in a PBPK model. The PC value

represents a measure of the solubility of a chemical in a tissue versus a reference matrix, such as blood or

air. The PC value quantitatively describes the affinity of a specific chemical for one matrix over another.

Variability in a PC value can adversely impact the predictive accuracy of the model. Quite often, in the

absence of experimental data, the value of this parameter is estimated based on known physical properties

of the chemical in question. Additionally, algorithmic calculations have been developed which predict a

chemical specific PC based on experimentally derived PCs from oil and water tissue surrogates (Gargas et

al., 1989; Meulenberg and Vijverberg, 2000; Poulin and Krishnan, 1996). Use of these algorithms can be

beneficial, particularly when there is a need to reduce costs associated with obtaining tissues from

animals. To increase model accuracy, however, chemical and tissue specific PCs should be

experimentally determined.
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The vial equilibration method is the most common in vitro method for determining chemical specific PCs

(Gargas et al., 1989; Sato and Nakajima, 1979). This method has been modified to improve

reproducibility (Gearhart et al., 1993) and to increase throughput by quantifying multiple chemical PCs as

a mixture (Fisher et al., 1997). The vial equilibration method is ideal for volatile and semi-volatile

compounds and has been used most successfully for volatile organic solvents. Tissues are harvested from

the species of interest, particularly tissues that are the target of the chemical or site of toxicological effect,

and incubated with the test compound until equilibrium is reached between the tissue and the headspace.

The blood/air or tissue/air PCs are given by the ratio of the concentrations of the chemical in the blood or

tissue relative to its concentration in the headspace. A number of operational equations have been derived

to calculate these ratios under specific experimental conditions (Fisher et al., 1997; Gargas et al., 1989;

Gearhart et al., 1993; Sato and Nakajima, 1979). Time to achieve steady state condition is critical and

should be optimized for the test compound. Analysis is done by gas chromatography in a verified linear

range. Human tissues can be obtained from tissue bank organizations to provide species specificity to

models developed with human data.

To estimate PCs for compounds of low or non-volatility, the method of Jepson et al. (1994) can be used.

This in vitro filtration method has been validated in several biological tissues with compounds having a

vapor pressure as low as 9 x 10-6 mm Hg and as high as 14.2 mm Hg. PCs for non-volatile, water soluble

compounds can also be determined in vivo after establishing steady state concentrations in tissues. While

PCs have been estimated in vivo after a single dose, infusion of the compound to steady state provides a

more accurate estimation of the PC (Chen and Gross, 1979). The in vivo PC can be calculated as the ratio

C/CB, where C, denotes the concentration in tissue and CB denotes concentration in blood, both at steady

state. For an eliminating organ such as liver or kidney, this ratio may underestimate the PC value and

should be modified to include the effect of blood flow and clearance (Gibaldi, 1982).
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When incorporating PC values into PBPK models, it is important to remember that variability between

species and between age groups within a species may exist for the same matrix. Aged Sprague-Dawley

rats have been shown to have higher PC values for blood, liver, kidney, fat and brain when compared to

postnatal rats of the same strain. Another consideration is the effect of freezing on tissue quality and

measured PC value. The availability of human tissues from tissue banks has allowed for human-specific

PC determination; however, tissues are often shipped frozen and may result in under or over-estimated

values (Mahle et al., 2005).

In many cases, the investigator should be prepared to approximate chemical-specific parameters from

very limited available data. For example, in a recently developed PBPK model for perchlorate, partition

coefficients for the thyroid sub-compartments were based on electrical potentials measured within the

thyroid stroma, follicular membrane and lumen after perchlorate (C10 4 ) dosing (Chow and Woodbury,

1970). Electrical potential differences can be interpreted as effective partition coefficients for charged

moieties, such as C10 4- and iodide (F). These electrical potentials in the thyroid hinder entrance of

negatively charged ions from the stroma into the follicle, while the opposite potential from the follicle to

the lumen enhances passage of negatively charged species into the lumen and indicates an effective

partition coefficient greater than one. Using Chow and Woodbury's measured electrical potentials at the

stroma:follicle and follicle:lumen interfaces, effective partitions were calculated (Merrill et al., 2003).

Blood and tissue partition coefficients for a chemical can also be estimated, with varying degrees of

success, from its physico-chemical properties such as octanol-water partition coefficients and lipid and

water solubilities. In some cases, relevant properties of the blood and tissues, such as lipid composition

and binding protein concentrations, are utilized for estimation of partition coefficients. Reviews of

various models have been published (e.g., Payne and Kenny (2002)).
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METABOLISM: GAS UPTAKE AND IN VITRO METHODS

For volatile compounds, the gas uptake technique has been extensively used for determination of in vivo

metabolism (Filser, 1992; Gargas et al., 1986). In the case of non-volatile chemicals, an approach taken to

determine in vivo metabolism is to dose animals at varying concentrations, preferably by intravenous

injection, and sample the blood over time for parent and/or metabolite concentrations until there is

significant disappearance of chemical. Then, with the parameter values for partition coefficients and

excretory pathways set at experimentally determined values, Michaelis-Menten parameters, Vmax and Kin,

can be adjusted simultaneously to reproduce the blood concentration time-course of the chemical of

interest over the course of the study.

Excretion rates for parent and metabolite are determined by collecting urine, feces and exhaled breath

samples from animals dosed at different concentrations and then left in metabolism cages long enough to

account for the majority of the mass of parent chemical initially administered. The model parameters

responsible for excretion of parent or metabolite are then adjusted to account for the mass of parent and

metabolite chemical leaving the body by each route of excretion (Andersen et al., 1984).

Use of in vitro results to infer values in vivo is central to many of the inferences made in human health

risk assessment (Clark et al., 2004; Clewell and Andersen, 1989) (Figure 1). Although there may not

always be a direct correspondence between in vitro and in vivo values, careful consideration must be

given before abandoning a measured in vitro value in favor of fitting that parameter along with others to

the kinetic data as a whole. The latter approach will no doubt produce a better overall fit to the data (and

will give an effective value for the parameter that reflects the local biological milieu), but this comes at

the expense of the ability to exploit measured differences in vitro between animals and humans to reduce

uncertainty in the extrapolation.
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Allometric Scaling and Interspecies Extrapolation

As previously mentioned, allometric scaling is commonly employed to account for the difference in

parameters due to variations in bodyweight (BW) within a given species and across species. Allometry

takes the form of power law equations relating parameters to body mass. The classic allometric scaling

relationship relating metabolic rate (B) to body mass (M) is:

3

B = B0 M 4  (Equation 2)

where B0 is the normalization parameter or coefficient and M is body mass (Knaak et al., 1995; Lindstedt,

1987). This formula has been extended to a wide range of organisms from the microbes to large

vertebrates and plants. Hence, in pharmacokinetics, values for blood flows, diffusion, clearance rates and

maximum velocities are most commonly scaled by multiplication with BW3' 4. It should be noted that

body weight in these formulas assumes 'normal' body composition. Further adjustments for the prediction

of body size differences clearance and volume in obese or very skinny people will usually require the use

of other covariate information (e.g., height, skin thickness) to predict the weight with 'normal' body

composition. Additional adjustments may be required to account for developmental changes in very

young children (Anderson et al. 2000).

MODEL DEVELOPMENT AND VALIDATION

Experimental Design Considerations

To develop a model, one should determine what kind of problems occurs with the chemical(s) of interest.

Information on route of exposure, mechanism of target organ toxicity and biochemical and physiological

constants can be obtained by searching the literature. The mechanism of target organ toxicity will

determine whether the parent compound, metabolite(s) and/or reactive intermediate(s) are responsible for
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tissue toxicity. This will help determine whether to investigate a parent chemical and/or metabolite(s) for

model development.

Exposure (Administration)

The four major routes of administration of a chemical are inhalation, oral absorption, dermal exposure

and intravenous injection. Many conditions of a model, including length of exposure time and

concentrations of the chemical, are decided depending upon available kinetic data.

A gas uptake system, as described previously, can be used to expose animals to volatile chemicals in

pharmacokinetic studies (Gargas and Andersen, 1988; Gargas et al., 1986). The lungs are the main sites

of airborne chemical absorption in either whole body or nose-only exposure and are also elimination sites

for some volatile chemicals. Four to five exposure levels should range from lower concentrations (most

likely a first order uptake process) to higher concentrations, which should produce saturated kinetics

(Michaelis-Menten process). Complications, such as dermal absorption during whole body exposure or

ingestion from grooming (licking the fur) following exposure, should be considered if its contribution is

significant.

The exchange of gases in the lung, leading to systemic exposure via the inhalation route, is typically

described by the following steady-state equation (Krishnan and Andersen, 1994):

Q',NCi,,h + Q, C.e,
Car, Q (Equation 3)

where Cl.r and C,,, are the arterial and venous blood concentrations (mg/L), QaIv is the alveolar ventilation

rate (L/min or L/hr), Cim is the concentration in the inhaled air (mg/L), Qt is the cardiac output (total
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blood flow through the lung, L/min or L/hr) and PB is the blood-air partition coefficient. This equation

assumes rapid equilibration of the chemical across the alveolar walls, no significant metabolism in the

lung tissue and negligible storage capacity in the lungs. Additional factors that may be taken into account

in describing the exchange of gases in the lung include the lung "dead space", in which only 70% of the

maximum air capacity of the lung is actually exhaled in any one breath while 30% (the "dead space")

remains to be mixed with the next incoming breath; and potential "scrubbing" of chemical in the upper

respiratory tract (URT), which prevents it from being immediately absorbed in the lung (though it may be

ultimately ingested) (Clewell et al., 2001). The degree of scrubbing varies widely from chemical to

chemical and may lead to local effects in the URT (Morris et al., 2004; 2005).

Oral uptake of chemicals by drinking water or bolus administration is a common method of dosing

animals and humans with a study chemical. It should be recognized, however, that different species have

gastrointestinal tracts with different anatomical and physiological characteristics (Kararli, 1995). The rate

of absorption of a chemical into the systematic circulation depends on gastrointestinal (GI) blood flow, GI

transit time, surface area, contents, enterohepatic circulation, chemical solubility and the vehicle used.

Chemicals can be absorbed by passive diffusion as well as carrier-mediated transport through the intestine

epithelium. Enterohepatic circulation can affect uptake and excretion of a compound. When a chemical is

absorbed through oral uptake, the first passage through the liver will produce metabolite(s) that are

excreted into bile before ever reaching systemic circulation. This first pass will lower the chemical's

initial systemic concentration in blood. In addition, some of the chemical will be reabsorbed from bile and

result in an increase of parent or metabolite(s) concentration in systemic circulation well after initial

uptake.

Oral uptake of a chemical is greatly influenced by vehicle effects on GI absorption. The chemical

properties of the vehicles used in the experiments will result in different uptake patterns when compared

with consumption of regular food or drinking water, the normal vehicles of environmental exposure.
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When absorption of halogenated hydrocarbons in water or corn oil was investigated, for example, the rate

of uptake of these chemicals in oil was slower and blood concentrations were lower than those in water

(Withey et al., 1983). Vehicle effects, enterohepatic circulation and fasting (versus regular feeding of

animals before dosing) are important issues to consider when designing experiments for oral gavage

studies. Absorption rate constants of chemicals by oral gavage are obtained by fitting data with a

preliminary pharmacokinetic model.

Intravenous (iv) injection, by a single bolus or infusion, eliminates the absorption process and introduces

chemicals directly into systemic circulation. Unlike the process of oral ingestion, chemicals reach the

target organ before first-pass elimination by the liver. Elimination kinetics can easily be obtained by iv

injection. Water or physiological saline is a frequently used vehicle to dissolve chemicals; oily vehicles

should not be used with this route. The constant infusion of a chemical into blood circulation will reach a

steady state when the input rate of a chemical is same as its elimination rate and in vivo partition

coefficients can be measured by analyzing tissue concentrations once steady state is reached.

Distribution (Translocation)

After entering the blood circulation via inhalation, dermal absorption, oral uptake or iv injection, a

chemical is distributed to tissues throughout the body. Its distribution is related to cardiac output and

regional blood flow to the target organs. Richly perfused tissues like liver, kidney, heart and brain will

receive the initial chemical distribution. Chemical affinity to tissues then plays a role in determining the

storage of a chemical in specific tissues. The free proportion of chemical in blood, not a bound form,

generally exerts the toxicological action.

Plasma proteins like albumin may bind with chemicals and act as storage depots. A protein bound

chemical becomes unbound when its equilibrium state is changed, releasing the free chemical. This makes

the chemical's biological half-life longer, with the blood acting as a storage compartment. Plasma protein
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binding alters a chemical's availability for uptake into specific organs and tissues. In general only the

free, unbound form is available for uptake and it suffices to have an estimate of the equilibrium free

fraction of the chemical in the plasma. However, when uptake is rapid, the equilibrium free fraction may

not be a good estimate for the locally free material that is actually available for uptake. In such cases,

more detailed data on the kinetics of binding (such as association and dissociation rate constants) may be

required to fully characterize the uptake of the material into tissues (e.g., Robinson and Rapoport (1986)).

In addition to plasma protein binding, many organs such as the liver, kidney and bone may also act as

storage reservoirs for chemicals, depending on physico-chemical properties and tissue binding affinities.

Algorithms have been developed to predict specific tissue distributions of organic chemicals based on the

tissue's lipid and water content (Poulin and Krishnan, 1996). Of specific concern, lipophilic compounds

are accumulated in adipose tissue and are slowly released to systemic circulation, which may be a major

determinant of the time-course of a chemical's concentration in the bloodstream.

Metabolism (Biotransformation)

The liver is the major organ active in metabolizing chemicals. Other tissues such as the kidney, skin, GI

tract and lungs also have capacity for metabolism. Mechanisms of action for certain chemicals indicate

that some metabolites are more toxic to the target organ than their parent compounds (Brunker et al.,

1989; Henningson et al., 1987; Medinsky et al., 1989). Time course studies of the parent compound

and/or its metabolite(s) are used to describe uptake, distribution, metabolism and elimination patterns

(Clewell and Andersen, 1989). Liver metabolism is presented as a sum of the mathematical descriptions

for the first order pathway and/or saturable metabolism, as necessary. Saturable metabolism is usually

described in terms of Michaelis-Menten kinetics, so that the metabolism rate (mg/min) is given by:

Metabolism Rate = V(Equation 4)

16



where Vmiax (mg/min) is the maximum hepatic metabolic rate, Km (mg/L) is the Michaelis-Menten

constant and c (mg/L) is the concentration of the chemical in the liver. The mass balance of the chemical

in the liver for use in the model is then given by:

V,(__' -0 ( iC art - (p )_) V.aK (Equation 5)
tdt )=tCr p~ mxC, + K,,ý

where V, is the liver volume, Q, is the liver blood flow, C, is the arterial concentration, C, is the

concentration in liver tissue, and (PC), is the blood-liver partition coefficient specific to the chemical,

species and tissue.

Elimination

An important consideration when developing a PBPK model is the elimination of the parent compound or

metabolites through the urine, feces or exhaled air. Biotransformation of xenobiotics often results in more

water soluble metabolites that are excreted in urine or feces. After dosing, animals can be maintained in

metabolism cages designed to collect urine and feces separately. Analysis for parent compound and

metabolites can provide a time-dependent excretion rate. Volatile organic solvents are largely exhaled,

especially when the dose route is inhalation. Metabolism of many organic compounds yields CO2, which

is also exhaled. Specialized metabolism cages have been designed to trap exhaled compounds,

particularly exhaled CO2. By quantifying the loss of parent or metabolite through all possible elimination

pathways, a mass balance ratio can be achieved.

Parameter Fitting and Optimization

It is not uncommon for the maximum velocity (V.,) for the uptake of a specific chemical to vary

between tissues and species. Often V,,,x values are not available in the literature and must be derived via
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optimization, either visually or with software programs. A visually optimized V,,x,, is typically fit to the

clearance portion of the time-course data, while keeping all other parameters fixed. The V.,, is then

adjusted so that the model prediction adequately approximates the observed mean. When extrapolating a

model from test species to humans, time-course data may be lacking for many compartments due to the

difficulty of obtaining human data. In such cases, Vmax values are estimated to yield kinetics (i.e.,

tissue:serum concentrations) similar to those described in rats, or whatever species for which the original

model was developed. For example, in the perchlorate model, because C10 4 data were only available in

serum and urine, C10 4" Vma,, values for sodium iodide symporter (NIS) containing tissues were scaled

from iodide V.,, values, using the corresponding iodide and C10 4 " Vm,, ratios established in the male rat

model (Merrill et al., 2003).

Diffusion, together with active uptake in particular tissue compartments, can be described using

permeability area cross products (PA) (L/hr-kg) and effective partition coefficients. In general, PA values

are optimized to the uptake portion of the time course curves prior to setting Vm,, values, with partition

coefficients and all other parameters already set (with exception of that compartment's Vmax value). These

visual optimization approaches were used by Merrill and coworkers (2003). The early time-course data

represent transfer or uptake of the chemical into a specific compartment.

First order rates describing the loss of a chemical from a compartment, either through metabolism, direct

secretion into systemic circulation or elimination out of the body, can be optimized to the clearance

portion of the respective data (later time-points), keeping all other parameters fixed. Similarly, reversible

binding of a chemical can sometimes be described using an optimized first order rate constant. For

example, the binding of a chemical to plasma proteins can be optimized to available serum data (Clewell

et al., 2003a; Merrill et al., 2003).
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Many investigators believe that model parameterization should be completed with a global optimization

of the parameters utilizing all of the data sets used in the model. Several numerical tools exist for this

purpose and are relatively easy to use to obtain a global optimum. Many currently available software

modeling packages have such software optimization routines (Klein et aL., 2002; Levitt, 2002; Tan et al.,

2003). Fitting of model parameters to experimental data is often performed by repeatedly using a log

likelihood function (Andersen et al., 2001; Collins et al., 1999). The usefulness of such an automated

approach varies from case to case and depends on a number of factors, such as the quality of the data and

the number of adjustable parameters.

Uncertainty and Variability

PBPK models are designed to reduce the levels of uncertainty typically found in more "classical" risk

assessments. Such uncertainty is commonly embodied in the familiar, though quite arbitrary,

"uncertainty" or "safety" factors, due to necessary extrapolations across species, doses and routes of

exposure. PBPK modeling eliminates the necessity for these factors by providing a quantitative

description of the toxicological process that can be used as the basis for these extrapolations. The

traditional uncertainty factors are thus replaced with uncertainties associated with the values of the PBPK

parameters (uncertainties which are often readily estimated), together with the less well-defined

uncertainty associated with the appropriateness of the model itself and its level of abstraction.

Monte-Carlo Analysis and Parameter Sensitivity

Statistical dependencies of model outputs on variations in model inputs are often determined using

Monte-Carlo techniques. In these techniques, the effects of parameter variability on the simulation are

assessed by assuming a statistical distribution for each parameter of interest. Whenever possible, the

actual distribution of a parameter is utilized. Input quantities can be varied by sampling from a number of

probability distribution functions, including Uniform, Normal, Exponential, Beta, Chi-Square, F and

Gamma distributions. A random value is then chosen from each of these distributions (assuming
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statistical independence) and the simulation is run. This process is repeated until a statistical distribution

of the output is produced (typically thousands of iterations). The distribution of the model output gives an

indication of how much uncertainty (or variability) is due to the uncertainty (or variability) in the values

of the input parameters.

If only one input parameter is varied in this way (with the others being held constant), the output

variability directly reflects the sensitivity of the system to that specific parameter. Typically the relative

impact of each parameter on model predictions is assessed first. This is done after finalizing all model

parameters. The model is run at a dose low enough to not saturate its nonlinear metabolic mechanisms for

a period long enough to ensure equilibrium. The average biomarker, such as serum concentration area

under the curve (AUC), is predicted. The model is then repeatedly rerun, using a 1% increase in each

parameter to determine the resulting change in predicted biomarker. Sensitivity coefficients for each

parameter are calculated as shown in Equation 6, where A equals the biomarker with 1% increased

parameter value, B equals the biomarker using original parameter value, C equals parameter value

increased 1% from original value and D equals the original parameter value. In cases where specific

parameters drive most of the output variation (i.e., the parameters have the highest sensitivity

coefficients), it is particularly important to ensure that an effort is made to define those parameters more

precisely than the other, less consequential parameters.

(A -B)

Sensitivity Coefficient = B (Equation 6)

D

Model Validation

A major advantage of a PBPK model over classical kinetic compartmental models is that a PBPK model

will ideally reproduce the underlying structure and processes of the biological system. In order to see
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whether or not this is in fact the case, the model is validated. Once a model has been developed and

optimized so that it adequately reproduces the data at hand, it is then required to satisfactorily predict the

behavior of the biological system under quite different conditions (i.e., additional studies and data sets).

In some cases, particularly where relevant data are scarce, a choice may need to be made as to which

portion of data from a study is used for model development and which part is retained for model

validation. The most convincing argument for the utility of a model is if it makes clear predictions, which

are subsequently verified through the use of different and diverse data sets.

When the model verification process fails, it may mean that the model structure is inappropriate, or that

the level of physiological detail in the model needs to be increased (model refinement). In the model

development process, decisions have probably been made (based in large part on the investigators'

experience) as to what biological processes to include and which to exclude from the model as (probably)

irrelevant. At this stage, these decisions need to be reconsidered in order that the model more adequately

describes the biological reality. The overall model development process thus takes on an iterative

structure as shown in Figure 2.

ADVANCED PBPK MODELS

By their very nature, PBPK models are specific to the compound or compounds in question and need to

take into account those processes that are particularly important for those compounds. In many cases,

bare-bones models are shown to be inadequate during the model development/validation process. Thus

they often become much more complex than the simple Ramsey-Andersen model. In this section, we

consider some of the processes that may need to be considered in the development of more complex

PBPK models.
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Diffusion Limitation

In many cases, the simple description of a compound instantaneously equilibrating between tissue and

(venous) blood according to a characteristic partition coefficient (Equation 1) is insufficient to describe

the tissue kinetics. One reason for this may be that the tissue compartment is sufficiently large that the

material takes a finite time to diffuse from the interface with the blood into the depths of the tissue itself.

This may be the case for a lipophilic material distributing (slowly) in the fat or liver compartment, for

example. This process can be described with a diffusion term as is traditional in compartmental analysis.

Note that such a diffusion limitation term is often expressed in terms of a "PA" or a permeability-surface

area product. This term may be misleading as it is usually not suggested that there is an actual membrane

barrier to the diffusion process.

PBPK/PD models

These models include a quantitative, mechanism-based description, not just of the kinetic processes

(absorption, distribution, metabolism and elimination), but also the relevant interactions of the

chemical(s) with the target site(s) and possibly some of the resulting biological responses. There is a

natural and gradual transition between what is considered as "kinetic" and what is "dynamic". Many

models seamlessly cover both areas in order to describe the biology as a whole. In those cases, a specific

biological response is measured as a result of a specific exposure. This response, as well as the kinetics of

the exposed material, needs to be modeled in order to provide a complete description of the process and to

be able to predict the response under different exposure conditions.

As an example, we consider a recent set of models for the biological effect of perchlorate on thyroid

function (Clewell et al., 2003a, 2003b; Merrill et al., 2003). Detection of C10 4 in several drinking water

sources across the U.S. has lead to public concern over health effects from chronic low-level exposures

(Motzer, 2001). Perchlorate inhibits thyroid iodide (I-) uptake at the NIS, thereby disrupting the initial

stage of thyroid hormone synthesis. A PBPK model was developed to describe the kinetics and
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distribution of both radioactive F and C104" in both humans and rats. The model also simulates the

subsequent inhibition of thyroid uptake of radioactive I- by C10 4", as well as the response of the system to

upregulate NIS in the presence of sustained levels of perchlorate. Although thyroid hormones and their

regulatory feedback are not incorporated in the model structure, the model's successful prediction of free

and bound radioactive I and perchlorate's interaction with free radioactive F provide a basis for

extending the structure to address the complex hypothalamic-pituitary-thyroid feedback system and,

ultimately, predict the effects of iodide deficiency and perchlorate exposure. This progressive

development of the model structure in order to describe greater levels of detail of the biological system is

a major advantage of the PBPK/PD approach to data analysis.

Life Stage Extrapolation

A current concern in the risk assessment community is the particular sensitivity of the developing fetus

and newborn to environmental contaminants. In order to address this issue, models of the developing

organism need to account for their changing physiology. Physiological parameters can change both as a

direct result of growth and changing body-weight (see Allometric Scaling) and as a result of various

biochemical and physiological processes switching on and off during critical periods of development,

maturation and aging (Figure 4).
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Figure 4. Net mass gain of various body tissues in humans as a function of age. Excerpted from
Valentin (ed.) (2002).

Again, the perchlorate models serve as an example. Pregnancy and lactation models were necessary

because of the susceptible periods for disruption of thyroid hormone homeostasis during development.

These models needed to take into account changes during pregnancy, fetal development and post-natal

development. In addition, these models had to incorporate placental and lactational transfer of both

perchlorate and iodide (Clewell et al., 2003a, 2003b; Merrill et a!, 2003). Figure 5 shows PBPK models

for the mother and fetus linked via placental transfer.
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significant physiological changes that take place around birth that must be taken into account in the

modeling. In particular, circulatory changes as the newborn begins to breathe by itself are crucial to the

model outcome.

Mixtures

Mixtures toxicology is proving to be different from single-chemical toxicology in several fundamental but

often unrecognized ways. These differences bring into focus some specific benefits of the PBPK approach

to risk assessment issues, even for relatively simple mixtures of just a few components. For example, for

mixtures, exposure is nearly always via multiple routes or pathways, which need to be integrated in terms

of an absorbed systemic dose. In addition, other stressors (such as noise, heat, infection, etc.) may play a

significant role in the overall environmental health response to a mixture exposure scenario. Interactions

are potentially many and varied. Pharmacokinetic and pharmacodynamic interactions may occur at the

same site or at different sites via complex physiological processes (including defense mechanisms).

Cumulative effects of different exposures/stressors over time need to be considered that can alter the

"baseline" susceptibility of the individual. PBPK modeling is an important tool used to integrate these

processes into a quantitative, predictive framework based on interaction mechanisms.

In addition to the interactions between a relatively small number of interacting chemicals, the study of

complex chemical mixtures (such as hydrocarbon fuels) may involve thousands of (frequently

unidentified) components, each at very low doses, but together constituting significant exposure levels. In

such cases, detailed parameterization of the models is impossible and statistical approaches may need to

be used (Robinson and MacDonell, 2004).

The perchlorate/iodide models constitute an example of a simple binary mixture in which the interaction

between these two compounds takes place as they compete for transport into the thyroid via the NIS

mechanism (Clewell et al., 2003a, 2003b; Merrill et al., 2003). Complex mixtures, however, are usually
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considered to contain a dozen or more components. For example, fuels such as gasoline, diesel fuel and

jet fuel consist of hundreds or thousands of individual chemical components interacting primarily via

competitive metabolic inhibition in the liver. In these cases, it is not possible to model each of the

individual binary interactions (the number of parameters would quickly become prohibitive), so

alternative methods are needed. Such alternative approaches include "lumping" of chemically similar

components, so that they can be represented by a much smaller number of "representative' compounds

that are modeled in detail. Alternatively, if the "bad actor" in a complex mixture can be identified (such as

benzene in gasoline), the mixture can be modeled as an interacting binary mixture consisting of the "bad

actor" and the rest of the mixture lumped together as a single entity (Dennison et al., 2004; Robinson and

MacDonell, 2004). The trade-off with this approach is that the lumped component has properties (such as

partition coefficients) that may change significantly with time as its individual compounds fare differently

in the body as a result of differential uptake, distribution, metabolism or elimination.

CONCLUSIONS: APPLICATION TO RISK ASSESSMENT

In order to use a PBPK model in risk assessment (rather than as a generator of ideas and hypotheses), we

must have a degree of confidence in the model. How do we know we have an adequate model? Generally,

as a rule of thumb, a "good" PBPK model will:

"* Fit or adequately describe diverse data sets, often in multiple species and routes of exposure.

"* Use independently estimated (in vivo, in vitro or even theoretical) values for parameters whenever

possible, rather than fitting many parameters to the kinetic data.

"* Be physiologically realistic and as simple as possible, with few, if any, ad hoc inclusions.

In general, there is a trade-off between model detail and ability to independently estimate key model

parameters.
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The primary function of a PBPK model in risk assessment is to provide the basis for reliable

extrapolations, usually to humans at low doses via the most appropriate route(s) of exposure. The process

of extrapolation raises a number of issues. For example, when extrapolating to low environmental

exposures from studies done at relatively high doses, potential issues such as switching from one

metabolic pathway to another need to be considered. Such issues are usually taken care of in a good

mechanism-based model, but some processes important at low doses may still be overlooked.

Interspecies extrapolation is perhaps the major success story for PBPK modeling. It serves to reduce the

uncertainties associated with the extrapolations A and D in Figure 1 by explicitly providing a quantitative

framework, based on species-specific physiology, in which to incorporate parameters (physiological, in

vitro biochemical and theoretical) for both animals and humans. This approach can be extended further by

explicitly taking into account physiological and biochemical changes taking place as an organism

develops and ages. The standard "parallelogram" approach for interspecies extrapolation can then be

extended to a "parallel-piped" approach with extrapolation across both species and life stages using in

vitro or otherwise independently estimated species- and life-stage-specific parameter values (Figure 6).
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In demonstrating its ability to successfully extrapolate delivered doses across species and routes of

exposure, PBPK modeling has been able to replace traditional uncertainty or safety factors in risk

assessment calculations. The resulting calculation replaces an approach that in general strives to be

conservative (in the sense that the safety factors attempt, above all, to be protective) with an approach that

aims wherever possible for accuracy in estimating the delivered dose. This is an important change in

philosophical perspective and a word of caution is in order, in that the inevitable remaining uncertainty in

the PBPK model, though considerably reduced, is not necessarily on the side of conservatism. It is

therefore particularly important to address wherever possible the risk assessment implications of specific

uncertainties inherent in any specific PBPK model associated, for example, with parameter estimates. The

degree to which particular parameters affect the final outcome of the risk estimation can be explored via

sensitivity analysis (Clewell and Andersen, 1989). The propagation of errors and uncertainties in

parameter estimates (as well as biological variability), through the model calculations to the final output,

is often explored by means of Monte-Carlo analysis (Clewell and Andersen, 1989). What cannot be so

easily estimated is the possible error or uncertainty introduced by the particular choice of model structure
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consistent with the data and its level of detail; this remains a choice largely based on intuition and

experience.

Determination of the delivered dose is not the "end-all" of modeling of the interaction of a chemical with

an organism. In many cases, mechanism-based models span the rather arbitrary interface between

pharmacokinetics and pharmacodynamics. Such combined pharmacokinetic/pharmacodynamic models

are becoming more common and represent a major focus area. Today we have an explosion of

information at the cellular level regarding gene expression, protein production and cell signaling. The

challenge is to make use of data such as these in a quantitative way, to apply PBPK modeling approaches

to the interpretation and integration of genomic, proteomic and metabonomic data, and to apply

biochemical network modeling beyond merely identifying relevant networks so as to develop a fully

quantitative analysis.
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